

# Urban Intelligence: IoT data integration and movement analysis

Name: Kyoung-Sook Kim

Title: Team Leader

Organisation: Artificial Intelligence Research Center

National Institute of Advanced Industrial Science and Technology Email: ks.kim@aist.go.jp





## Self-Introduction

- Education: B.S., M.S., and Ph.D.
  - Pusan National University, South Korea
- Work Experiences
  - 2007.11 ~ 2014.03: Researcher, NICT, Japan
  - 2014.04 ~ 2017.08: Researcher, AIST, Japan
  - 2017.09 ~ present : Team Leader, AIST, Japan
- Research Projects
  - Spatial and Spatiotemporal Data Management
  - Big Data Analysis and Visualization
  - IoT-based Smart City Applications
  - etc.
- International Standardization
  - A co-chair of Moving Features SWG of the Open Geospatial Consortium(OGC)

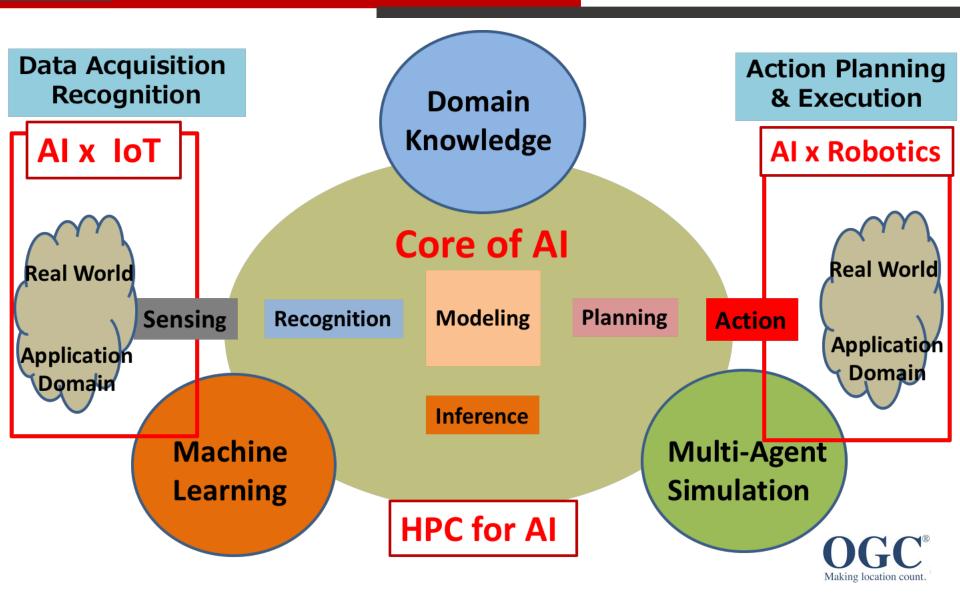


|                                                       | AIRC@AIST                                                             |                                             |  |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| NATIONAL INSTITU<br>ADVANCED INDUSTRIAL SCIENCE AN    | Environment Biotechnology Human Factors Chemistry Manufacturing Japan | National<br>Metrology<br>Institute of Japan |  |  |  |  |  |
| HOME > About AIS1                                     | Research Unit                                                         |                                             |  |  |  |  |  |
| AIST:Al                                               |                                                                       |                                             |  |  |  |  |  |
|                                                       | <ul> <li>Information Technology Research Institute</li> </ul>         |                                             |  |  |  |  |  |
| The National In                                       | Human Informatics Research Institute                                  |                                             |  |  |  |  |  |
| organizations ir<br>industry and so                   | organizations ir                                                      |                                             |  |  |  |  |  |
| For this, AIST is comprehensive                       | Intelligent Systems Research Institute                                |                                             |  |  |  |  |  |
| AIST, as a core<br>research and de<br>formulated with | Automotive Human Factors Research Center                              |                                             |  |  |  |  |  |
| AIST is also act comprehensive                        |                                                                       |                                             |  |  |  |  |  |
| Initiativ                                             | Artificial Intelligence Research Center                               |                                             |  |  |  |  |  |



## Artificial Intelligence Research Center (AIRC)

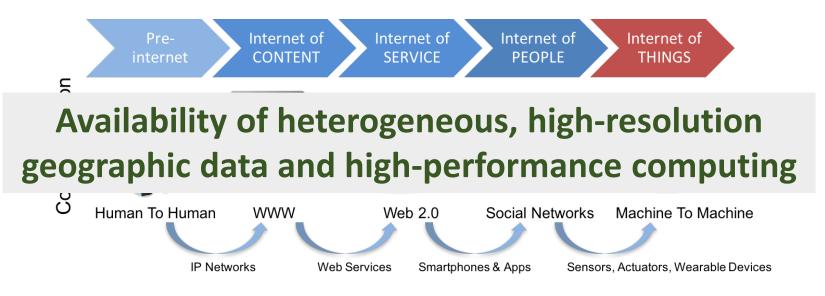
## AI Embedded in the Real World - from the Internet to the Real World -




## Al which cooperates with Human Cooperative Autonomy, Explainable Al






## AI Embedded in the Real World





## IoT + AI + Geo





- An infrastructure of interconnected objects, people, systems and information resources together with intelligent services to allow them to process information of the physical and virtual worlds and react. (ISO/IEC JTC 1/SWG 5 AHG1)
- The fusion of the physical (reality) and virtual (perception) worlds accelerates geospatial capture, coordination, and intelligence in unprecedented ways.







#### as the world's first large-scale OPEN AI Infrastructure





**ABCI** Al Bridging Cloud Infrastructure

- Top-Level SC compute & data capability, 0.55 EFLOPS (HP), 37 PFLOPS (DP)
- Open, Public & Dedicated infrastructure for AI & Big Data algorithms, software, and applications
- Platform to accelerate joint academicindustry R&D for AI in Japan
  - 0.55 EFLOPS (HP), 37 PFLOPS (DP)
  - 2.3 MW
  - < 1.1 Avg. PUE

Dperational 2018 August











## Al Infrastructure for everyone



#### Ultra-dense IDC design from ground-up

- Custom inexpensive lightweight "warehouse" w/ substantial earthquake tolerance
- X20 thermal density of standard IDC

#### Extremely green

- Ambient warm liquid cooling, and high-efficiency power supplies
- Commoditizing supercomputer cooling technologies to Cloud IDC (70kW/rack)

#### De facto HW&SW architecture

- State-of-the-art AI and HPC software properties built for de facto commodity arch.
- Rapid technology transfers to commercial clouds and companies

#### Leveraging software ecosystem

 Container & repository support, to ease development & deployment, as well as to share/reuse codes among community

#### Data happy but secure

- Multi-PB scale storage & data platform for sharing/publishing your own data
- Both comm. channel and data can encrypted by de facto encryption methods



## Capable to serve for > 100 research projects, > 1000 researchers & engineers



## **ABCI HW**



High-Performance Computing System 0.55 AI-EFLOPS, 37.2 PFLOPS 476 TiB Mem, 1.74 PB NVMe SSD

#### Computing Nodes (w/ GPU) x1088

| 42.8                  |     |
|-----------------------|-----|
|                       | GPU |
|                       | GFU |
| and the second second |     |

NVIDIA Tesla V100 SXM2 x4

Intel Xeon Gold 6148 x2

Memory 384GiB

Local Storage

1.6TB NVMe SSD

Interconnect

CPU

InfiniBand EDR x2

#### Multi-platform Nodes (w/o GPU) x10

- Intel Xeon Gold6132 (2.6GHz/14cores) x2
- 768GiB Memory, 3.8TB NVMe SSD

Interactive Nodes x4

Management and Gateway Nodes x15

#### Interconnect (Infiniband EDR)

- Mellanox CS7500 x2
- Mellanox SB7890 x229

#### Service Network (10GbE)



100Gbs

SINET5

ount.

FortiAnalyzer 400E x1



## **ABCI SW Stack**



#### Software

| Operating System     | CentOS, RHEL                                                                                           |
|----------------------|--------------------------------------------------------------------------------------------------------|
| Job Scheduler        | Univa Grid Engine                                                                                      |
| Container Engine     | Docker, Singularity                                                                                    |
| MPI                  | OpenMPI, MVAPICH                                                                                       |
| Development tools    | Intel Parallel Studio XE Cluster Edition, PGI Professional Edition, Python, Ruby, R, Java, Scala, Perl |
| GPU SDKs & Libraries | CUDA compiler, IDE, Debugger, Profilers, cublas, cufft, nvgraph, cudnn,                                |
| Deep Learning        | Caffe, Caffe2, TensorFlow, Theano, Torch, PyTorch, CNTK, MXnet, Chainer, Keras, etc.                   |

#### Ontainer support

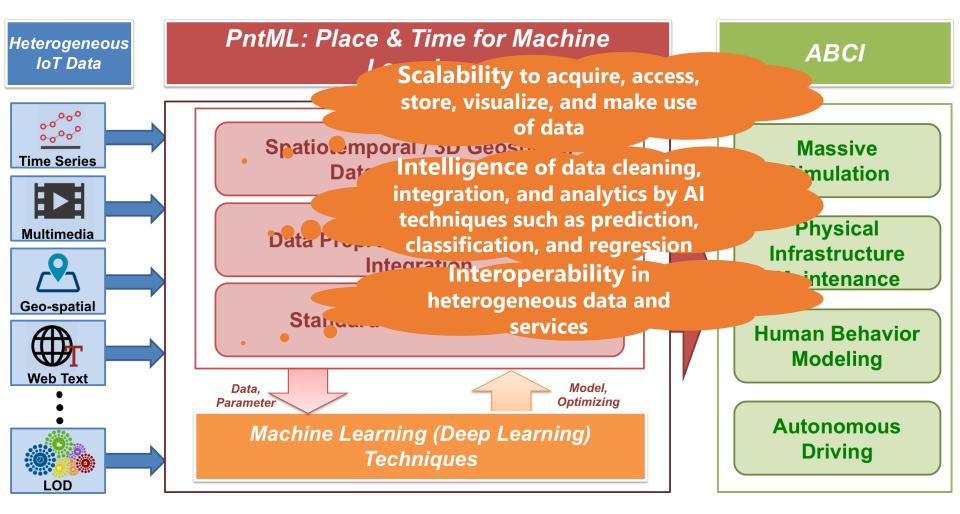
- Containers enable users to instantly try the state-of-the-art software developed in AI community
- ABCI supports two container technologies
  - Docker, having a large user community
  - Singularity, recently accepted HPC community
- ABCI provides various single-node/distributed deep learning framework container images optimized to achieve high performance on ABCI







## ABCI Grand Challenge Program




| http://ab<br>Resource: 1,08  | <b>oci.ai</b><br>38 nodes (4,3520 | FREE                         |                                    |
|------------------------------|-----------------------------------|------------------------------|------------------------------------|
|                              | Application<br>Period             | Notification of<br>Selection | Challenge Execution<br>Period      |
| No.1<br>(Finished)           | 2018.4.1-30                       | 2018.5.30                    | 2018.7.23-27                       |
| No.2<br>(Application Closed) | 2018.8.1-31                       | 2018.9.30                    | 2018.10.23-26                      |
| No.3                         | 2018.11.1-30                      | 2018.12.21                   | End of 2019.1.<br>(Tentative Date) |

- Themes are open. An individual or a group may propose a theme.
- About 2 themes will be selected for each ABCI Grand Challenge program period.
- $\cdot$  Joint research themes with AIST may be accepted if both parties are in agreement.
- · Testing opportunities will be available with small-scale trials before the challenge.
- ABCI is free of charge including during testing.
- $\cdot\,$  Challengers will be asked to follow the ABCI Agreement.



## Data Platform for IoT + AI + Geo







### Seamless 3D Geospatial Management





## Use Case: KISTI Urban Sensing Data by Taxis

- Mobile urban sensing dataset
  - Fifteen-type raw data
    - Moving object properties
      - time, geolocation, and vibration
    - **Environment information** 
      - temp, humid, particle matters(PM2.5, 10) NO<sub>2</sub>, SO<sub>2</sub>, CO, VOC, noise
    - Multimedia contents
      - Video image from Black box recorder, webcam
  - Utilizing parts of KISTI data sets
    - Moving object properties (time, geolocation)
    - Multimedia contents (black box recorder) ٠

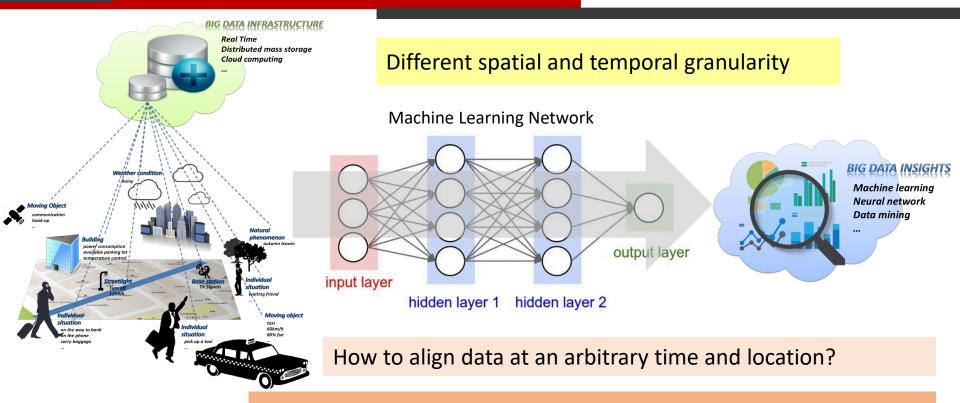




Korea Institute of Science and Technology Information

Collaboration with Dr. Ryong Lee

다운로드 커넥터


전원커넥터

통신(RS232) 커넥터

RS232 IC



## **Benefits of OGC Moving Features**



#### OGC Moving Features Time instance t in T= [a, b], geometry g in G mf(t) : T $\rightarrow$ G, mf(g) : G $\rightarrow$ T





## **OGC Moving Features Modules**

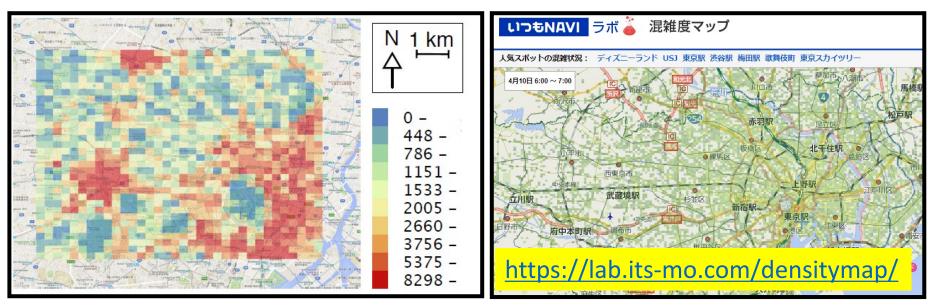
| Service Interface<br>Specifi-   |                                                                                                           |                                                 | 16-140r1 JSON (RESTful API)<br>(for handling moving feature data over<br>HTTP)               |                                                                   |                                                              |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|--|
| cations                         | 16-120r3 Moving Features Access<br>(guideline for implementing interfaces to support moving feature data) |                                                 |                                                                                              |                                                                   |                                                              |  |
| Encoding<br>Specifi-<br>cations | 14-084r2 Simple<br>CSV (compact<br>encoding for<br>massive moving<br>points)                              | 16-114r3 netCDF<br>(compact binary<br>encoding) | 16-140r1 JSON<br>(for encoding trajectories, linestring,<br>polygon with dynamic non-spatial |                                                                   |                                                              |  |
|                                 | 14-083r2 XML Core<br>(for encoding trajectories)                                                          |                                                 | attributes)                                                                                  |                                                                   |                                                              |  |
| Data<br>Model                   | Ŭ                                                                                                         | Features 0D<br>points)                          |                                                                                              | Moving<br>Features<br>1D/2D<br>(lines, curves,<br>polygons, etc.) | Moving<br>Features 3D<br>(cubes, spheres,<br>3D model, etc.) |  |
|                                 |                                                                                                           |                                                 |                                                                                              |                                                                   | Making location count.                                       |  |



### Data Integration







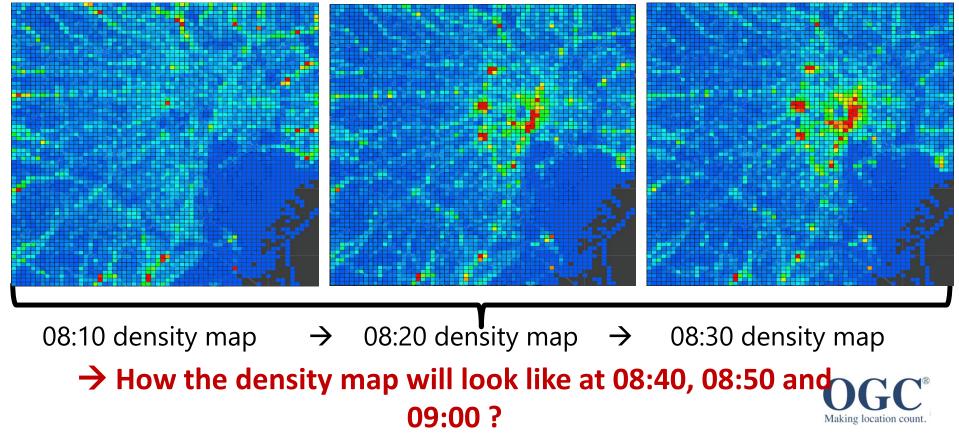

## Spatio-temporal Data Analysis





- Mesh-based crowd density presentation  $\rightarrow$  Density Map
  - ✓ Some web services like "its-mo navi" can provide crowd density presentation of the current or past.



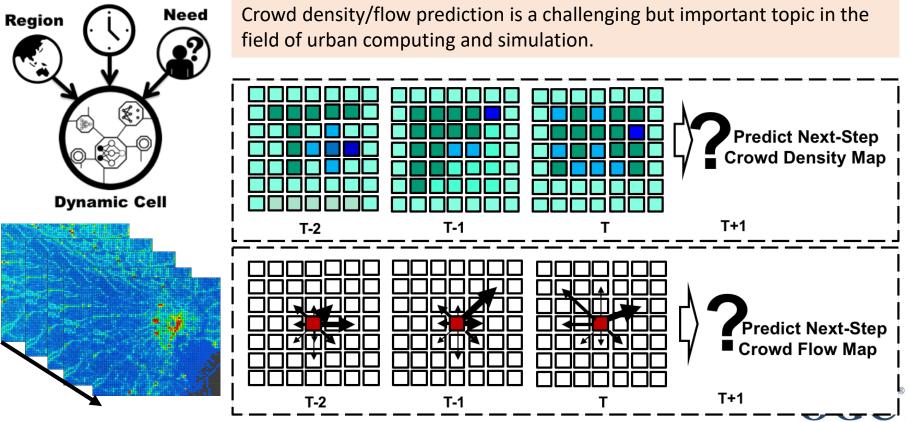

Prediction function for the future (e.g. 2 hours later) is still challenging and not included in such kind web service.





## **Urban-scale Mobility**

- Density map can be obtained/observed at fixed timestamps (e.g. every 10 minutes, 08:10 -> 08:20 -> 08:30 -> ...).
- Given current observed multiple steps of density map, predict or simulate next multiple steps.

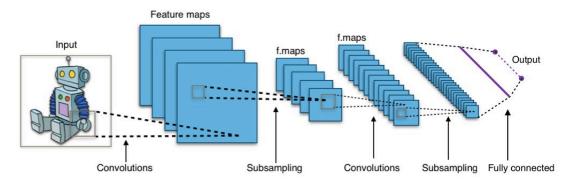




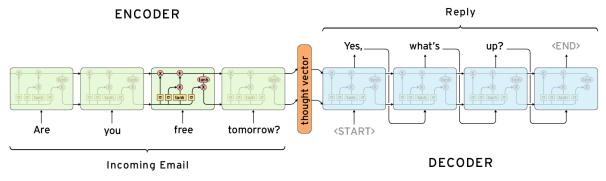

Time

## Dynamic Cell Modeling of Urban-scale Mobility

**Dynamic cells**: a new model and framework that can simultaneously predict movement density and flow to seamlessly connect between 3D indoor and outdoor.




Making location count.




## Movement Prediction based on Deep Learning

- Deep learning technologies have demonstrated superior performances on various datasets.
  - Image recognition: Convolutional Neural Network (CNN).



• Sequential data (e.g. speech, text): Recurrent Neural Network (RNN).



→ deep-learning technologies to predict crowd density





## **Preliminary Results**

• Two deep video models (1) CNN and (2) Convolution LSTM.

| V | <u>CNN</u>                  | Resi  | ult   |                  |        |     |           |
|---|-----------------------------|-------|-------|------------------|--------|-----|-----------|
|   | Model                       | MSE   | for   | multi            | step,  | Ο,  | 7.669393  |
|   | Model                       | MSE   | for   | multi            | step,  | 1,  | 11.859134 |
|   | Model                       | MSE   | for   | multi            | step,  | 2,  | 16.573191 |
|   | Model                       | MSE   | for   | multi            | step,  | З,  | 21.872316 |
|   | Model                       | MSE   | for   | multi            | step,  | 4,  | 27.496741 |
|   | Model                       | MSE   | for   | multi            | step,  | 5,  | 33.319080 |
|   | Averag                      | (e Mo | del N | <b>ASE : 1</b> 9 | 9.7983 | 809 |           |
| V | ✓ Convolutional LSTM Result |       |       |                  |        |     |           |
| i | Model                       | MSE   | for   | multi            | step,  | 0,  | 7.014705  |
|   | Model                       | MSE   | for   | multi            | step,  | 1,  | 10.258397 |
| i | Model                       | MSE   | for   | multi            | step,  | 2,  | 13.578582 |
|   | Model                       | MSE   | for   | multi            | step,  | З,  | 17.053038 |
|   | Model                       | MSE   | for   | multi            | step,  | 4,  | 20.590691 |
| Ì | Model                       | MSE   | for   | multi            | step,  | 5,  | 24.188083 |
| I | Averag                      |       |       |                  |        |     |           |

← Better than CNN

→MSE is really good at the citywide level for this short-video model.
 →(RMSE < 4.0 for each 500-meter mesh-grid.)</li>





- What is the biggest barrier for sharing mobility data of crowd?
- How do we share the mobility data beyond the concern of privacy?
- The mobility data is closely related to the physical infrastructures. How do we predict the urban mobility when a disaster happens and it destroys the physical infrastructures?

